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Specific features of heat transfer in a high-temperature granular bed are studied based on a two-region model 

which takes into account the existence of an elevated porosity area. 

Investigations of nonteady-state heat transfer between a dispersed material and a surface, apart from the 
solution of purely applied problems, are also of great interest for elucidating the heat transfer mechanism in 
heterogeneous systems. 

In recent years, significant advances have been made in describing heat transfer of concentrated dispersed 
systems with surfaces on the basis of a two-region model, allowing for the elevated filling porosity near a heat transfer 
surface [ 1 ]. In the present paper we apply this concept to simulate unsteady-state heat transfer in a high-temperature 
granular bed where radiation heat transfer becomes essential. 

The problem of nongradient heating (cooling) of a vertical cylinder in a granular bed can be formulated as 
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The latter from the boundary conditions in (3) corresponds to nongradient heating (cooling) of a cylinder submerged 

into the bed. 
The boundary-value problem of (1)-(3) was solved numerically for two different gas-solid systems (see Table 

1). We used the implicit absolutely stable difference scheme [2 ] realized by the running-in trail method. Owing to 
the discontinuous variation in thermophysical characteristics of the medium at the gas-bed boundary, in order to 

retain the required accuracy of calculations, the following relation must be satisfied: 
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TABLE 1. Initial Data 

Element of the system 

Bed 

Detector (cylinder) 

Gas 

Particles (balls) 

Parameter 

Radius, m 

Height, m 

Porosity 

Radius, m 

Heat capacity, J/(kg. K) 

Density, kg/m 3 

Heat capacity, J/(kg.K) 

Density (at 0~ kg/m 3 

Velocity, m/sec 

Heat capacity, J/(kg. K) 

Density, kg/m 3 

Thermal conductivity, W/(m. K) 

Variant 

0.08 

0.04 

04 

Copper 

0.002 

0.055 

0.11 

0.4 

Nickel 

0.0035 

390 

8000 

1000 

1.29 

0 

Glass 

750 

2600 

0.74 

440 

8900 

1000 

1.29 

0 

Slag 

800 

2300 

0.5 
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Fig. 1. Nonsteady-state heat transfer at room temperatures: 1,2,3,4,5) d-- 0.39 
mm; 0.93; 2.07; 3.05; 5.05 mm; T O = 299 K; Tw -- 295 K; e w -- 0.1; es -- 0.6. a,  
W / ( m  2" K) ; t, sec. 

where At, Arl, Ar2 are the dimensional integration steps in time and in the coordinate r in the film and in the bed, 

respectively. Condition (4) establishes the relation between nondimensional digitization intervals in the bed and in 

the near-wall gaseous film. The thermal conductivity of the dispersed filling was calculated by the formula [3 ] 

&s0 == LI I i  + (l --- e)(1 - -  LflL*) 
0,288o.6a(.~ , /xl)o, is , (5) Xz/L* + L 

and a linear interpolation in the form ;tf = 0.024 + 6.38. l0 -5 (Tf-273), W / ( m .  K) was taken for the coefficient ;tf. 

Following [1 ], the gaseous film thickness l 0 = 0.1d. The radiant energy transfer inside the filling is considered in the 

contex of the "photon" thermal conductivity and is characterized by the corresponding effective coefficient )lr. 

Assuming optical isotropy of the granular medium away from the boundaries, we calculate2r by the Rosseland formula 

[4]: 
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Fig. 2. Fraction of the radiant heat transfer component (1,2,3,4,5) d -- 0.07, 
0.39, 0.83, 2.23, and 5.05 ram; ena -- 0.8 and e s -- 0.6: a) To -- 1773 K; Tw = 295 
K; b) 295 and 1773 K. 
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Fig. 3. Nonsteady-state heat transfer in a high-temperature granular bed: 1, 
2) d = 0.39 and 5.05 ram; To = 1773 K; Tw = 295 K; ew = 0.8; es = 0.6. 

The coefficients of absorption tc and scattering 7 in (6) were predicted by the following formulas obtained from the 

solution to the transfer equation in the Schwarzschild-Schuster approximation for a plane-parallel bed and a spherical 
scattering indicatrix [4 ]: 

where 
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The reflecting R* and transmitting t* powers for a plane-parallel bed of particles of the dispersed material of N-rows 

thickness with porosity e were determined by the model [5 ] for the prescribed degree of emissivity of particles %. 

The heat transfer coefficient was calculated by the formula 

= - -  ~t OTIOr(a) / (T i (a) - -  To) -F o* [T~ (a) - -  T~ (a -F lo)]l(Tt (a) - -  To). (8) 
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Fig. 4. Cylinder heating dynamics in a granular bed. Symbols are the same as 
in Fig. 3. Tf(a), K. 

Fig. 5. Nonsteady-state heat transfer in a high-temperature granular bed 
(a generalizing graph). Symbols are the same as in Fig. 2b. 

Conductive Heat Transfer (the case of Moderate Temperatures). Figure 1 presents the results of the 
numerical experiment on heat transfer at room temperatures for system 1 (see Table 1) as well as the experimental 

data of [6 ], which quite satisfactorily coincide with the computational functions. Analysis of the results obtained 

showed that at sufficiently small times in the a (t) dependence there exists a stabilization section where a is virtually 

unchanged. With increase in particle diameter, this section grows with time. The values of the heat transfer coefficient 

in this region are well described by the relation a = 10 2f/d, which is equivalent to the equality Nu -- 10 = I /K,  

where K = 0.1 is the nondimensional thickness of the gaseous film. Thus, at the stabilization section, heat transfer 

is completely defined by contact thermal resistance (resistance of the gaseous film). 

Conductive-Radiative Heat Transfer (the case of Elevated Temperatures). Figures 2-5 show the results of 
the numerical experiments for system 2 (see Table 1). As can be seen from Fig. 2, the radiative component 

contribution may be considerable (especially for coarse particles) and reaches 65 %. The dependence of ar/a on time 

is of an extremal character, and with increase in particle diameter it smooths out. Because of the inverse nature of 

the relation between the heat transfer coefficients in the beds of coarse and fine particles (Fig. 3), the cylinder heating 
time is practically independent of their diameter (Fig. 4). As with purely conductive heal transfer, the curves at small 

times have a stabilization section where a -- 10 2r((Tw+To)/2)/d, i.e., Nucon=acond/Af((Tw+To)/2)=lO (Fig. 5). 

Thus, in the case of complex heat transfer too, the thermal resistance of the gaseous film, calculated at the 

determining temperature (Tw+To)/2, defines completely the conductive heat transfer component at the stabilized 
section. 

N O T A T I O N  

a0~ af,s, horizontal thermal diffusivity; a, cylinder radius; B = R/lo; C, specific heat; d, diameter 

of particles; lo = 0. ld, thickness of a gaseous film; L, height of a dispersed bed; Fo = (af)ot/l~; Nu = ad / l f ;  R, radius 

of a dispersed bed; r, coordinate; r ~ = a/lo; t, time; T, temperature; To, initial temperature of a dispersed bed; a, 

heat transfer coefficient; e, porosity; ~= r/lo; p, density; ~'= (rf)0/pf; ew, emissivity of a heat transfer surface; es, 
emissivity of particles; 0 = (T-T0)/(Tw-To); Af=lf/Cf(pf)o(af)o; As=As/ps(1-e)Cs(as)o; A, horizontal thermal 

conductivity; 20=(;%)0/(200; A=2loAfCf(pf)o/aCbpb; As ~ thermal conductivity of dispersed filling; As, thermal 

conductivity of the solid particle material; 2f, thermal conductivity of gas; 2s=20+;tr; a**=a*(Tw-To)lo/(Af)O; 

cr*=cr/(1/ew+ 1/~0.485_ 1); a, Stefan-Boltzmann constant. Indices: b, heat exchanger material; c, conductive; f, gas; 

s, solid particles; r, radiative; ( )0 at T -- 0~ w, heat transfer surface. 
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